Krylov single-step implicit integration factor WENO methods for advection-diffusion-reaction equations

نویسندگان

  • Tian Jiang
  • Yong-Tao Zhang
چکیده

Implicit integration factor (IIF) methods were developed in the literature for solving time-dependent stiff partial differential equations (PDEs). Recently, IIF methods are combined with weighted essentially non-oscillatory (WENO) schemes in [Jiang and Zhang, Journal of Computational Physics, 253 (2013) 368-388] to efficiently solve stiff nonlinear advection-diffusion-reaction equations. The methods can be designed for arbitrary order of accuracy. The stiffness of the system is resolved well and the methods are stable by using time step sizes which are just determined by the non-stiff hyperbolic part of the system. To efficiently calculate large matrix exponentials, Krylov subspace approximation is directly applied to the implicit integration factor (IIF) methods. So far, the IIF methods developed in the literature are multistep methods. In this paper, we develop Krylov single-step IIF-WENO methods for solving stiff advection-diffusionreaction equations. The methods are designed carefully to avoid generating positive exponentials in the matrix exponentials, which is necessary for the stability of the schemes. We analyze the stability and truncation errors of the single-step IIF schemes. Numerical examples of both scalar equations and systems are shown to demonstrate the accuracy, efficiency and robustness of the new methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Krylov implicit integration factor WENO methods for semilinear and fully nonlinear advection-diffusion-reaction equations

Article history: Received 15 October 2012 Received in revised form 25 June 2013 Accepted 15 July 2013 Available online 23 July 2013

متن کامل

Operator splitting implicit integration factor methods for stiff reaction–diffusion–advection systems

For reaction–diffusion–advection equations, the stiffness from the reaction and diffusion terms often requires very restricted time step size, while the nonlinear advection term may lead to a sharp gradient in localized spatial regions. It is challenging to design numerical methods that can efficiently handle both difficulties. For reaction–diffusion systems with both stiff reaction and diffusi...

متن کامل

Operator splitting implicit integration factor methods for stiff reaction-diffusion-advection systems

For reaction-diffusion-advection equations, the stiffness from the reaction and diffusion terms often requires very restricted time step size, while the nonlinear advection term may lead to a sharp gradient in localized spatial regions. It is challenging to design numerical methods that can efficiently handle both difficulties. For reaction-diffusion systems with both stiff reaction and diffusi...

متن کامل

Krylov Implicit Integration Factor Methods for Semilinear Fourth-Order Equations

Implicit integration factor (IIF) methods were developed for solving time-dependent stiff partial differential equations (PDEs) in literature. In [Jiang and Zhang, Journal of Computational Physics, 253 (2013) 368–388], IIF methods are designed to efficiently solve stiff nonlinear advection–diffusion–reaction (ADR) equations. The methods can be designed for an arbitrary order of accuracy. The st...

متن کامل

Krylov Integration Factor Method on Sparse Grids for High Spatial Dimension Convection-Diffusion Equations

Krylov implicit integration factor (IIF) methods were developed in Chen and Zhang (J Comput Phys 230:4336–4352, 2011) for solving stiff reaction–diffusion equations on high dimensional unstructured meshes. The methods were further extended to solve stiff advection–diffusion–reaction equations in Jiang and Zhang (J Comput Phys 253:368–388, 2013). Recently we studied the computational power of Kr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 311  شماره 

صفحات  -

تاریخ انتشار 2016